Optimized models for design of efficient miR30-based shRNAs
نویسندگان
چکیده
Small hairpin RNAs (shRNAs) became an important research tool in cell biology. Reliable design of these molecules is essential for the needs of large functional genomics projects. To optimize the design of efficient shRNAs, we performed comparative, thermodynamic, and correlation analyses of ~18,000 miR30-based shRNAs with known functional efficiencies, derived from the Sensor Assay project (Fellmann et al., 2011). We identified features of the shRNA guide strand that significantly correlate with the silencing efficiency and performed multiple regression analysis, using 4/5 of the data for training purposes and 1/5 for cross validation. A model that included the position-dependent nucleotide preferences was predictive in the cross-validation data subset (R = 0.39). However, a model, which in addition to the nucleotide preferences included thermodynamic shRNA features such as a thermodynamic duplex stability and position-dependent thermodynamic profile (dinucleotide free energy) was performing better (R = 0.53). Software "miR_Scan" was developed based upon the optimized models. Calculated mRNA target secondary structure stability showed correlation with shRNA silencing efficiency but failed to improve the model. Correlation analysis demonstrates that our algorithm for identification of efficient miR30-based shRNA molecules performs better than approaches that were developed for design of chemically synthesized siRNAs (R(max) = 0.36).
منابع مشابه
Lentiviral miR30-based RNA Interference against Heparanase Suppresses Melanoma Metastasis with Lower Liver and Lung Toxicity
AIM To construct short hairpin RNAs (shRNAs) and miR30-based shRNAs against heparanase (HPSE) to compare their safety and their effects on HPSE down-modulation in vitro and in vivo to develop a more ideal therapeutic RNA interference (RNAi) vector targeting HPSE. METHODS First, we constructed shRNAs and miR30-based shRNAs against HPSE (HPSE-shRNAs and HPSE-miRNAs) and packed them into lentivi...
متن کاملDefining the optimal parameters for hairpin-based knockdown constructs.
Induction of gene silencing using intracellularly expressed silencing triggers has been explored for large-scale loss-of-function screening, creation of knockdown cell lines or knockdown animals, and disease intervention. In all of these applications, the use of highly potent silencing constructs can maximize the possibility of obtaining target knockdown and thereby is intrinsically important f...
متن کاملProcess Improvement of Experimental Measurements Using D-optimal Models
In this paper, the application of D-optimal models, as an alternative to response surface models (RS models) for design of experiment (DOE) was examined. Two D-optimal models for tilt-rotors in the wind tunnel experiment, as a form of quadratic functions, were generated based on a chosen optimality criterion. This optimality criterion was used to generate the optimized sampled points in the des...
متن کاملA Rapid and Scalable System for Studying Gene Function in Mice Using Conditional RNA Interference
RNA interference is a powerful tool for studying gene function, however, the reproducible generation of RNAi transgenic mice remains a significant limitation. By combining optimized fluorescence-coupled miR30-based shRNAs with high efficiency ES cell targeting, we developed a fast, scalable pipeline for the production of shRNA transgenic mice. Using this system, we generated eight tet-regulated...
متن کاملA New Optimized Hybrid Model Based On COCOMO to Increase the Accuracy of Software Cost Estimation
The literature review shows software development projects often neither meet time deadlines, nor run within the allocated budgets. One common reason can be the inaccurate cost estimation process, although several approaches have been proposed in this field. Recent research studies suggest that in order to increase the accuracy of this process, estimation models have to be revised. The Construct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2012